A microphysical parameterization for convective clouds in the ECHAM5 climate model: Single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site
نویسندگان
چکیده
[1] The microphysical parameterization used for stratiform clouds in the ECHAM5 climate model is now extended for simulations of convective clouds. The performance of the newly implemented parameterization in simulating midlatitude continental summertime convective cloud systems is evaluated in this paper at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site in Oklahoma using the single-column mode (SCM) of ECHAM5. Three ARM intensive operating periods (IOPs), including two summer ones and a late spring one, are used for the evaluation. Results show that the SCM simulated cloud cover fraction agrees well with observations. The SCM also captures most of the precipitation events. With the new microphysical parameterization, the model performs at least as well as with the original model setup in simulating almost all the fields examined in this study. Significant improvement is shown in the simulations of outgoing longwave radiation and net incoming solar radiation at the top of the atmosphere revealing the feasibility of the new parameterization. Sensitivity studies show that a 10-fold increase in cloud droplet number concentration significantly increases the simulated liquid water content. More interestingly, this increase in cloud droplet number leads to an increase in the total amount of precipitation in two of the three IOPs.
منابع مشابه
Evaluation of Mixed-Phase Cloud Parametrizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment
Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...
متن کاملEvaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment
Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...
متن کاملEvaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations
Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as ...
متن کاملPreface to special section: Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period examining aerosol properties and radiative influences
[1] Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microph...
متن کاملRACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases single-column model CAM5 simulations of shallow cumulus
Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility’s Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005